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Abstract. Non-zero spatial energy fluctuations,〈(1E)2〉 > 0, are characteristic of an
amorphous material, and can be uniquely expressed in terms of molecular distributions and
interaction potentials. An approximation relating〈(1E)2〉 to the density fluctuations,〈(1ρ)2〉,
enables us to express the former in terms of pair distribution,g(r) (or scattering function,S(k)),
data and given pair potentials.

A modelling of g(r) in a form g(r) = g(r; L, D), whereL is an optimal virtual lattice
characterizing the local configurations of atoms andD is a ‘structural diffusion’ parameter
specifying the degree of spatial decay of coherence between local structures in the amorphous
system, provides expressions for the energyE and for 〈(1E)2〉 in terms ofL andD. This
enables us to obtain the entropy functionS = S(E) by integrating∂2S/∂E2 = 〈(1E)2〉−1

along a (virtual) path defined in parameter space{L, D}, connecting the amorphous state to
an ordered state (L, D = 0). The method is illustrated on a model system of ions immersed
in a uniform background of opposite charge (a model ‘metal’), by calculating its entropy as a
function ofD in a range corresponding to typical liquid and glass structures.

1. Introduction

An amorphous material is a disordered system [1] as far as atomic structure is concerned.
This statement can be based on the following observations of ordered and disordered
structures.

(i) In an ordered, spatially extended (i.e. macroscopic) system the spatial atomic
arrangement in alocal domain determines uniquely the atomic positions in the entire space.
(This holds for any crystal, whether periodic or ‘quasicrystal’.) On the other hand, in a
disordered system it is impossible to deduce the entire spatial atomic configuration from
knowledge of the atomic positions in a finite domain, no matter how large.

(ii) The experimental observation of order and disorder involves scattering experiments
which produce patterns of interfering waves scattered from a macroscopic number of
different localities in the bulk material. These patterns show a set of sharp peaks for a
crystal, but a diffuse structure for an amorphous material [2], which indicates that in the
case of an ordered system (the crystal) there is full matching (‘coherence’) between spatial
atomic positions in different localities, forming a global pattern (a lattice), whereas in the
disordered system we obtain only a diffuse pattern of the local order, which has to be
interpreted by a statistical model.

When considering the position of atoms in a solid, it is common practice to view the
atoms as arranged in one particular configuration, corresponding to some energy minimum.
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However, as shown above, viewing a macroscopic system as being in a single microstate
is inconsistent with our concept of disorder and with experiment, which gives us only
information concerning the local arrangement of atoms. Hence a macroscopic system
must be viewed always as anensemble of local domains(which can be large relative to
atomic dimensions but small relative to the size of the system), each possessing a particular
configuration of atoms.

In a disordered system the local domains are distributed over a large number of
microstates and the entropy associated with this distribution is necessarily positive. It is the
‘structural’ (configurational) entropy of the system,S = Sstr > 0, and is positive irrespective
of whether the system is in a frozen-in glass state preventing transitions between different
local structures, or whether it is a liquid in internal dynamic equilibrium. It has been claimed
occasionally that a glass at absolute zero,T = 0, can be assigned a zero entropy [3, 4], and
that the system gains its full entropy content when it is heated through the glass transition
temperatureTg. However, in light of the foregoing considerations this approach seems an
unnecessarily restrictive interpretation of empirical evidence and of the concept of entropy
as a measure of disorder (see below).

Evaluation of the entropy requires knowledge of the distribution of local domains over
a set of microstates. Given the probabilities{pj } of microstates in the ensemble, a general
expression for the entropy is

S = −kB
∑
j

pj log pj (1)

where the set{j} of microstates must be defined in a way leading to correct correspondence
with the quantum states of the system. To find this correspondence is not trivial even in the
simple case of a microcanonical ensemble, equal probabilities for all microstates within a
given narrow interval of energyE: there is no clear way of counting discrete microstates
in a simple liquid or glass where the atoms are distributed continuously in configuration
space [4]. (The classical statistical formulae for such systems giveS → −∞ in the dense
packed limit.)

In the following we choose to evaluate the entropy of a condensed amorphous system
by a route which avoids the necessity of direct knowledge of the distribution of microstates
of the system in a given energy interval. Instead, it is based only on experimental data of
molecular distributions and on a knowledge of the molecular interaction potentials.

2. Entropy and spatial energy fluctuations

Experimentally, the entropy is determined normally by calorimetry, by following the heat
capacity along a reversible path from the given state of the system to a reference state where
the entropy is known, which can be either the crystalline state atT = 0, whereS = 0,
or the gaseous state, where exact statistical formulae for the entropy are available (taking
into account the relevant internal degrees of freedom of the molecules). Heat capacity and
temperature measurements involve energy exchange between the system and a heat bath.
This process is related to basic statistical properties of the system. The heat capacity,C, is
related directly to the energy fluctuations,

C = 〈(1E)
2〉

kBT 2
(2)

and the temperature,T , is expressible in terms of the entropy, given as a function of energy.
We have the following relations (withS given in units ofkB):

S = S(E) (3a)
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∂S

∂E
= 1

kBT
≡ β (3b)

∂E

∂β
= −〈(1E)2〉 ∂2S

∂E2
= − 1

〈(1E)2〉 . (3c)

These equations follow from a representation of the macroscopic system by a canonical
ensemble. The latter is derived [5] by choosing in (1) for the microstates{j} eigenstates
of the energy, and maximizingS by varying the{pj }, subject to the constraint of a given
average energyE,

E =
∑
j

pjEj .

The canonical ensemble can be viewed as representing a compound system consisting of a
large number of subsystems which are themselves macroscopic, i.e. the total energy of the
system is a sum of the energies of the subsystems. This is valid whether the subsystems
are in mutual thermal equilibrium or not, as is the case in glass. If the subsystems are in
complete internal equilibrium, each can be represented by a microcanonical ensemble with
equal weights assigned to all states within a narrow energy intervalE < Ej < E +1 (for
1 small compared toE). The canonical ensemble then leads to the Boltzmann distribution
p(E) ∝ �(E) e−βE , with β a corresponding Lagrange multiplier. Since the system is
macroscopic, the number of states,�(E), in the energy interval (1) increases exponentially
with E, from which it follows thatS is an extensive andβ an intensive property of the
system.

Similarly, a glass can be represented by a microcanonical ensemble which isrestricted
by additional constraints. Although the nature of these constraints is not well understood,
it is expected that they can be represented by a set of parameters, sayg, characterizing
the states of the system in addition to the energy. Hence arestrictedcanonical ensemble
can be derived by the same variational procedure as applied to the equilibrium system, but
now keepingg constant, leading to the Boltzmann distributionpg(E) ∝ �(E, g) e−βE ,
with �(E, g) the number ofaccessiblestates (smaller than�(E)), and a corresponding
Lagrange multiplierβ = β(E, g)).

Thus, equations (3) are general relations which hold for any statistical ensemble
representing a macroscopic physical system, whose energy is a sum of the energies of
its subsystems and whose entropy is defined by (1) [5]. For glass, the derivatives in (3b)
and (3c) are taken along a path of constantg through the point in (E, g) space.

In glass, the frozen-in state prevents transitions between different local structures, and
thus no energy fluctuations can be monitored by a heat bath exchanging energy with the glass
system. Consequently no ‘structural’ temperature or heat capacity can be measured directly
and no quasireversible path through a sequence of glass structure states can be followed by
calorimetry. Yet, a structural temperatureT = Tstr and a heat capacityC = Cstr are now
defined, via (3b) and (2) respectively, by the ensemble representing the glass in its particular
frozen-in structure. Both quantities are obtained directly from the entropy function (3a).

We shall take (3c) as a starting point for the evaluation of the entropy. As will be shown
below, 〈(1E)2〉 can be computed from pair distribution data and a given pair potential.
This leads to an expression for〈(1E)2〉 as a function ofE, which enables in principle the
integration of (3c).
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3. Spatial energy fluctuations: an explicit expression

Viewing the macroscopic system as an ensemble of macroscopic subsystems, an expression
for the spatial fluctuations of a local energy can be obtained in terms of molecular interaction
potentials and low-order molecular distributions. In particular, when the molecules interact
via a pair potential,ϕ(r), the average interaction energy ofN molecules is

E = 1

2

〈∑
i 6=j

ϕij

〉
= 1

2
ρ2
∫
ϕ(12)g(12) d1 d2 (4)

and the energy fluctuations are given by [6]

〈(1E)2〉 = E2− E2

where

E2 = 1

4

〈∑
i 6=j

ϕij
∑
k 6=l

ϕkl

〉
= 1

4

〈 ∑
i 6=j 6=k 6=l

ϕijϕkl

〉
+
〈 ∑
i 6=j 6=l

ϕijϕil

〉
+ 1

2

〈∑
i 6=j

ϕ2
ij

〉
(5a)

E
2 = 1

4

〈∑
i 6=j

ϕij

〉〈∑
k 6=l

ϕkl

〉
. (5b)

Hence

〈(1E)2〉 = 1

4
ρ4
∫
ϕ(12)ϕ(34)

[
g(4)(1234)− g(12)g(34)

]
d1 d2 d3 d4

+ ρ3
∫
ϕ(12)ϕ(13)g(3)(123) d1 d2 d3+ 1

2
ρ2
∫ [
ϕ(12)

]2
g(12) d1 d2. (5c)

The summations in (4) and (5a,b) are over theN particles of the system and the different
terms of the rhs of (5a) result from selection according to coincidence between different
summation indices. A shorthand notation numbering the respective molecular coordinates
and volume elements has been used:g, g(3) and g(4) are respectively, pair, triplet and
quadruplet correlation functions, andρ is the average molecular density.

In summary, both the energyE and the energy fluctuations〈(1E)2〉 in a macroscopic
system are uniquely determined by the pair potentialϕ and low-order molecular distributions
g(k) (k 6 4) characteristic of the system, which can be frozen in or in dynamic internal
equilibrium.

4. Reduction of molecular distributions to a set of parameters

If we can find a path (a sequence of closely neighbouring states) along which we can
follow molecular distributions, and if this path connects the glass state with a state of
known entropy, then, given the potentialϕ, bothE and 〈(1E)2〉 can be evaluated along
the path and it is possible in principle to evaluateS for the glass by integrating (3c). A
modelling of molecular distributions by parametrized analytic functions has suggested how
such a path can be constructed.

The model used here is the structural diffusion model (SDM [7]), based on viewing the
variations in the atomic configurations at different localities as a randomspatial process.
In its simplest version the model relates the local atomic configurations to a latticeL

subject to random displacements,s = s(r), in space. The local density, which for a given
configuration ofN particles,rN ≡ (r1, r2, . . . , rN ), is given by

ρ(r) ≡ ρ(r; rN) = N∑
i=1

δ
(
r − ri

)
(6)
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is now approximated by

ρ(r) = ρ(r; s) =
∑
µ,σ

δ
(
r − aµ,σ − s

)
(7)

where the double sum runs over all lattice points,aµ,σ = aµ+aσ , of L; theµ-sum counts
the position vectorsaµ of all unit cells ofL, andσ = 1, . . . , n counts the pointsaσ inside
one unit cell. The average densityρ = 〈ρ(r; s)〉 is obtained by applying the operation
(1/v)

∫
v

d3s to (7), with v being the volume of the unit cell ofL. The random processs(r)
is chosen to be a radially evolving diffusion in ‘structure’ space{s}. Considering a pair
of points in space,r1, r2, and the respective random displacements,s1, s2, the conditional
probability density function,P(s|r), r = |r1 − r2|, s = s1 − s2, is assumed to obey for
larger a diffusion type equation,

∂P

∂r
= D∇2

s P (8)

whereD is a ‘structural diffusion’ coefficient. Solving (8),P(s|r) is obtained as an analytic
function (a theta-type series), depending parametrically onL andD, which can be applied
directly to evaluate the average〈

ρ
(
r1
)
ρ
(
r2
)〉 = ρ2g(r)

with the resulting radial pair distributiong(r) given by

g(r) = g(r; L, D) =
∑
ν

Cν e−Wb
2
ν

〈
eibν ·r〉

0 Cν =
∣∣∣∣1n∑

σ

eibν ·aσ
∣∣∣∣2. (9)

Here theν-sum extends over all points,bν , of the reciprocal latticeL∗, and theσ -sum runs
over all points in the unit cell ofL. The brackets〈〉0 denote averaging over all orientations
of L, or of r. W = W(r) has the asymptotic formsW ∼ Dr, r → ∞, andW ′(r) → 0,
r → 0. For practical reasons of convergence at smallr the particular form

W = W0+D
(√
r2+ r2

0 − r0
)

(10)

is used. Using (9), all functionals ofg(r) considered in the present discussion can be easily
evaluated.

It has been shown [7] thatL andD can be chosen optimally so as to reproduceg(r)

data for liquids to a high degree of accuracy. Moreover, the optimization is asymptotically
exact: the fittingg(r) = g(r; L, D) should improve with increasing complexity ofL (i.e.
increasingn), accompanied by a decreasing optimal value ofD. In the limit of L = LN
with a large numberN (say≈1000) of points in the unit cell, andD ≈ 0, the optimal
g(r; L, D) coincides withg(r) obtained by the reverse Monte Carlo method [8]. Yet, even
with a low complexityL = Ln, with n = 1, 2, 4, very good fits [7] to giveng(r) data are
obtained.

Consequently, the structure of a system in any given state can be represented by a point
in parameter space{L, D}. Given an optimalL andD = Dg, we can define a path in the
{L, D} space, connecting the glass state to an ordered stateL (D = 0), by the interval (see
figure 1)

06 D 6 Dg L fixed. (11)

This path need not be realized by an actual quasistatic process, but can be considered as a
virtual path. For any value ofD within the interval (11) the energy can be evaluated by
substitutingg(r; L, D) for g(r) in (4). Thus,

E = E(L, D) = 1

2
ρ2V

∫
ϕ(r)g(r; L, D) d3r. (4′)
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Figure 1. A path in {L, D} parameter space connecting an amorphous state with a virtual
crystalline state.

This equation has been used to evaluate numerically [10] the energyE(L, D) along
(11). It was found thatE(L, D) is a smooth function ofD which can be accurately
represented by a simple rational ([1/2] or [2/3]) approximant [10] over the entire interval.
It was used to evaluate lattice sums (Coulomb energies in particular) by extrapolation to
D→ 0.

The structural diffusion process as defined by (8) can be generalized to a multi-theta
process, from which analytic expressions similar to (9) can be obtained [9] for the higher-
order correlation functionsg(k) = g(k)(r(k); L, D), k > 2. These involve (k− 1)-fold sums
over lattice points. In the same way that a multi-Gaussian process is uniquely determined
by the pair distribution, the single Gaussian, so a multi-theta process can be fully expressed
in terms of the parameters (L, D) determining the single theta-type pair distribution.

Using the appropriateg(k) functions, an expression corresponding to (4′) can be obtained
for 〈(1E)2〉 = 〈(1E)2〉(L, D) from (5). However, to avoid using higher-orderg(k), which
are increasingly cumbersome to evaluate fork > 2, use is made in the following of an
approximate expression for〈(1E)2〉 depending only ong(r).

5. Approximate 〈(1E)〉 in terms of 〈(1ρ)〉

Given a particular configuration ofN particles,rN ≡ (r1, r2, . . . , rN), the interaction
energy can be decomposed formally into a sum of single-particle terms

E ≡ E(rN) =∑
i

ei
(
rN
)

(12)

where

ei
(
rN
) = 1

2

∑
j (6=i)

ϕ
(
rij
)
. (13)

Defining the local energy density by

e(r) =
∑
i

δ
(
r − ri

)
ei
(
rN
)

(14)

we now make the approximation

e(r) = ρ(r)e (15)
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where e = E/N is an average energy per particle. This approximation implies that
ei(r

N) = e for all i, irrespective of the particular configuration (rN ). Thus, fluctuations
in the energy density at a pointr result only from fluctuations in the particle density atr,
ignoring structural fluctuations in a more distant neighbourhood. Hence, with〈e(r)〉 = ρe,
we have

1e(r) = e(r)− 〈e(r)〉 = 1ρ(r)e (16)

〈(1E)2〉 =
∫
〈1e(1)1e(2)〉 d1 d2= e2

∫
〈1ρ(1)1ρ(2)〉 d1 d2

= N(E/N)2
∫

[G(r)− ρ] d3r (17)

whereG(r) = G(r, t = 0) = δ(r) + ρg(r) is the van Hove correlation function att = 0.
Using the structure factor (scattering function),

F(k) = 1+ ρ
∫

[g(r)− 1] eik·r d3r (18)

we can write (17) in the form

〈(1E)2〉 = N(E/N)2F(0). (17′)

(17) shows how the spatial energy fluctuations in a glass can be obtained directly from
scattering data. Making use of the analytic form (9) ofg(r) = g(r; L, D), the integration
in (18) can be performed analytically, and an accurate evaluation ofF(k) = F(k; L, D)
for small k values, includingF(0) = F(k→ 0), is possible. Hence, (17) together with (4′)
gives an estimate of〈(1E)2〉.

The density fluctuations are related to macroscopic properties of the system byF(0) =
kBT ∂ρ/∂P . This relation holds provided a structural temperature,Tstr , is substituted for
T . EstimatingTstr ∼ Tg, a glass transition temperature, and given the compressibility,
κ = ρ−1 ∂ρ/∂P , of the glass, the following relation should hold between experimentally
obtainable quantities:

kBTg = F(0)/κρ (19)

which implies thatF(0)/κρ remains constant for all thermally measuredT 6 Tg, provided
the approximation (15) does not involve a large error. Experimentally (19) might be difficult
to check sinceF(0) and κ are small and large errors are involved in particular in the
determination ofF(0) by extrapolation from scattering data.

Making use of (17′) and (19) one can obtain from (2) the structural heat capacity,

Cstr = N
(
E

N

)2
ρκ

Tg
. (20)

(20) is probably a somewhat low estimate ofCstr because of the approximation (15)
involved, which omits certain contributions of fluctuations in positions of triplets and
quartets of molecules to the energy fluctuations.

6. Particular solutions of (3c), ∂2S/∂E = −〈(1E)〉−

In order to evaluate the entropyS(E) = S(L, E) by integrating (3c) along the path (11),
the following boundary conditions at the end pointD = 0 are required:

lim
E→E0

S(E) = 0 (21a)
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Figure 2. Particular solutionsS = S(E) of (23).

lim
E→E0

∂S

∂E
= lim

E→E0

β(E) = ∞ (21b)

lim
E→E0

∂2S

∂E2
= − lim

E→E0

1

〈(1E)2〉 = −∞ (21c)

whereE0 = E(L, D = 0). Conditions (21a) and (21b) are a restatement of the third
law. The condition limE→E0〈(1E)2〉 = 0 follows from the condition on the heat capacity,
limE→E0 C = 0. Moreover, from (2) it follows that〈(1E)2〉 → 0 faster thanβ−2 ∼ T 2.

Thus, by (21),S(E) has an infinite slope and an infinite negative curvature at the ground
level limit. Hence, integrating (3c) we expectS(E) to have qualitatively the form of the
curves given in figure 2.

Assuming a simple power law

〈(1E)2〉 ∼ (E − E0
)1+δ

(22)

the following functional form ofS(E) results:

∂2S

∂E2
= − a

(E − E0)1+δ
(23a)

∂S

∂E
= a

δ(E − E0)δ
(23b)

S = a (E − E0)
1−δ

δ(1− δ) (23c)

0< δ < 1 a > 0.

The case ofδ = 0 can be included as well in (22) (see figure 2), but to ensure in this
case∂S/∂E > 0 for all allowed energiesE0 < E < ∞ we must add to (23a) a positive
term which goes to zero in the limitE →∞ and preserves∂2S/∂E2 ∼ −(E − E0)

−1 for
E→ E0. A simple choice is

∂2S

∂E2
= 1

E − E0+ B −
a

E − E0
B > 0 (24)

which by (3c) gives

〈(1E)2〉 = −
(
∂2S

∂E2

)−1

= (aB)−1
(
E − E0

)(
E − E0+ B

)
. (25)
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Figure 3. g(r; L, D) a a function ofr for threeD values (see the inset).L = fcc (r0 = 1.0,
W0 = 10−4, see (10)).

Thus, the caseδ = 0 requires adding also a term quadratic inE − E0 to (22). Integrating
now (24) twice, taking into account the boundary conditions (21), we obtain

∂S

∂E
= a log

E − E0+ B
E − E0

S = aε log
(M + J )M+J
MMJJ

M = E − E0

ε

J = B

ε
. (26)

Having introduced the additional constantε, we chooseε = kB/a and approximateM and
J by integers. This enables us to expressS(E) by a simple combinatorial formula,

S = kB log

(
M + J
J

)
(26′)

which suggests an interpretation in terms of boson statistics. Letε be a quantum of
excess (structural) energy,M the number of quanta andJ the number of local groups of
atoms which can sustain such quanta. Then the binomial coefficient in (26′) is the total
number of quantum states of the system. Clearly, such an interpretation can serve only as a
hint to a possible connection between glass structure and energy, which takes into account
the quantum constraint of a discrete state space.

7. Estimate of the entropy of a model liquid and glassy metal

As a more concrete example for evaluation of the entropy consider a system of charged
particles, neutralized by a uniformly distributed opposite charge, interacting in addition to
the Coulomb potential by an inverse power potentialAr−n. We chooseL = fcc for the
virtual lattice in g(r; L, D) and make use of the representations of the Coulomb energy
Ea = Ea(D) and the inverse power repulsive energyEr = Er(D) by rational approximants
[10] in the range 0< D < 0.02, which corresponds to typical structures of liquid and
amorphous metals (see figure 3). In addition we have constructed a rational approximant
representation for the zero-scattering structure factorF(0, D) (see table 1).

With the notation

Ea0 = Ea(0) Er0 = Er(0) e0 = E0/N ea0 = Ea0/N er0 = Er0/N
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Table 1. Coefficients of rational approximantsy(D) = (p0+p1D+p2D
2)/(q0+q1D+q2D

2).

p0 p1 p2 q0 q1 q2

ea −1.620 995 0.460 019 0.0 1.0 −0.283 564 5.452 831
er (n = 6) 14.451 106 107.139 6 0.0 1.0−11.110 731 49.426 576
F 0.0 0.035 879 1.974 872 1.0−18.914 906 0.0

u = (E − E0
)
/N ua =

(
Ea − Ea0

)
/N ur =

(
Er = Er0

)
/N

and with the nearest-neighbour distance chosen to minimize the total lattice energyE0, we
have

e0 = ea0+ γ er0 u = ua + γ ur γ = |ea0|
ner0

(27)

and introducing the notationf = 〈(1E)2〉/N for the reduced energy fluctuations, we have
from (17′)

f = (e0+ u
)2
F(D). (28)

SinceF(D) ≡ F(0, D) must be zero in the ordered system limit,D→ 0, we can put

f (D) = Dψ(D) ψ(0) 6= 0. (29)

Writing s = S/kBN for the reduced entropy, we have by (3c)

∂2s

∂u2
= − 1

f
s = s(u). (30)

Changing variables, (30) can be written in the form

∂

∂D

(
s ′

u′

)
= −u

′

f
s = s(D) u = u(D). (30′)

Hence

s ′

u′
= −

∫
u′

f
dD s = −

∫
dD u′

∫
u′

f
dD (31)

where primes denote derivatives with respect toD. Substituting the given rational
approximants foru andf , the integrations in (31) are straightforward. The two constants
of integration of (31) can be determined from the zero-entropy condition atu = 0 and from
the boundary condition

β ≡ s ′(u) = s ′(D)/u′(D)→ 0 u→∞ (D→∞) (32)

which is the limit of ‘maximum disorder’ (infinite temperature). However, the presently
applied rational approximants foru andf have been designed to fit small-u data and are not
consistent with (32). Neither do they comply with the condition (3c), β ′(u) = −[f (u)]−1,
which implies thatβ(u) is monotonically decreasing, nor with the stronger condition that
f (u) itself be monotonically increasing, possibly becoming infinite at the maximum-disorder
limit. Nevertheless, we shall assume that practicallyβ ≈ 0 at some limit pointD = D∞,
wheref (D) reaches its maximum, and require instead of (32),

β = β(u) = s ′(u)→ 0 u→ u∞ = u
(
D∞

)
. (32′)

(For the high-temperature limit, see however the comments in section 9.)
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In the following we adopt an integration procedure which enables also numerical
integration of (31). We handle first the singularity in the integrand on the rhs of (31)
by performing an integration over the interval (δ, D):

s(D) = lim
δ→0

{
u(D)

s ′(δ)
u′(δ)

−
∫ D

δ

dD u′(D)
∫ D

δ

u′(D)

f (D)
dD

}
. (33)

Integrating (33) by parts,

s(D) = lim
δ→0

{
u(D)

s ′(δ)
u′(δ)

− u(D)
∫ D

δ

u′(D)
f (D)

dD +
∫ D

δ

u(D)u′(D)
f (D)

dD

}
.(34)

The first term on the rhs of (34) has a singularity in the limitδ → 0, which must
cancel with the singularity contained in the integral in the second term. Extracting this
singularity from the integral and adding to the first term, we have, introducing the notation
χ(D) = u′(D)/ψ(D),

s(D) = −χ(0)u(D) log D+cu(D)−u(D)
∫ D

0
[χ(D)−χ(0)] dD

D
+
∫ D

0
u(D)χ(D)

dD

D
(35)

with

c = lim
δ→0

{
s ′(δ)
u′(δ)

+ χ(0) log δ

}
. (36)

Differentiating (35) and dividing byu′(D), we have

β(u) = s ′(u) = s ′(D)
u′(D)

= −χ(0) log D + c −
∫ D

0
[χ(D)− χ(0)] dD

D
(37)

and applying (32′)

c = χ(0) log D∞ +
∫ D∞

0
[χ(D)− χ(0)] dD

D
. (38)

Thus, substitutingc from (38) into (35), we have

s(D) = u(D)
∫ D∞

D

χ(D)
dD

D
+
∫ D

0
u(D)χ(D)

dD

D
. (35′)

The resulting numerical evaluation of the entropy from (35′) is represented in figure 4.
It shows e.g. that the entropy for a typical liquid structure (D = 0.02) is s = 8.99, whereas
for a typical amorphous solid structure (D = 0.006) it iss = 4.84, i.e. almost half the liquid
value. For comparison, the entropy of liquid Na is [12]s = 8.70 (T = 473 K).

8. The dependence ofS and E on the complexity ofL

Using two alternative model representations ofg(r), namely g(r) = g(r; L1, D1) and
g(r) = g(r; Ln, Dn), whereL1 is a simple lattice choice whileLn is a complex one,
i.e. having a larger unit cell with a larger base,Ln consists of a more densely spaced
sequence of shells and correspondingly requires a smallerD in order to achieve the same
dispersion of the peaks ing(r), i.e. Dn < D1. In the limit of Ln with a very large unit
cell, Dn is expected to be very small. Although the model states (Ln, Dn) and (L1, D1)
are macroscopically practically the same, the two ordered states (Ln, 0) and (L1, 0) are
macroscopically different, representing two different lattice structures. The total entropy
change for both systems is the same:

S
(
Ln, 0

) = S(L1, 0
) = 0 S

(
Ln, Dn

) ≈ S(L1, D1
)
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Figure 4. S = S(L, D) as function ofD from (35) for a model metal (D∞ = 0.052). The
bars on the curve delimit the section of the curve (0.006< D < 0.012) to which the Chebyshef
interpolation formula has been applied (see the text).

(see figure 5(a)). The entropy rise with increasingD is much faster in the complex system
(Ln) than in the simple one (L1). (A more complexL corresponds to a larger local domain
(unit cell), and hence is closer to a globally ordered view of the system.) On the other hand,
the energyE(L) ≡ E(L, 0) approachesEg with increasing complexity ofLn, thus differs
little from E(L, D) at high complexity (E(Ln, Dn) ≈ E(L1, D1)) (see figure 5(b)).

The above considerations imply that all parameters appearing in the expression (23) for
the entropy depend on the model choice ofL. This includes in particular the exponentδ
anda in (23), andB anda (or ε) in (25).

9. Comments

The energyE considered in sections 3–5 and 7, as well as the explicit calculation of its
fluctuations, refer strictly to the potential energyU , but the systems considered are at such
low temperatures that the thermal energyEth of vibrations is assumed negligible compared
to U . However, at higher temperatures the contribution of the thermal motion to the energy
dispersion must be taken into account in all foregoing applications to the evaluation of
S(E). In the classical limit one can put for the total energy fluctuations

〈(1E)2〉 = 〈(1U)2〉 + 〈(1EK)2〉 (39)

where〈(1U)2〉 and〈(1EK)2〉 are the dispersion of the potential energy as calculated above
in (17′) and of the kinetic energy, respectively. Strictly, with

E = U + EK 1E = 1U +1EK 1U = U − 〈U〉 1EK = EK − 〈EK〉
we have

〈(1E)2〉 = 〈(1U)2〉 + 〈(1EK)2〉 + 〈1U 1EK〉 + 〈1EK 1U〉. (40)

In the ordered ground state (〈E〉0 ≡ E0) 〈E2〉0 = 〈E〉20, hence〈(1E)2〉0 = 0. Thus the sum
of the cross terms in (40) must be negative. In the classical limit they drop out, resulting in
(39). Moreover, the cross terms seem to be negligible in disordered systems, where some
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(a)

(b)

Figure 5. (a) S = S(L, D) as function ofD, connecting a glass state with an ordered state
(L, D = 0), for a low and a high complexityL. (b) E = E(L, D), as in (a).

kind of ‘random phase’ approximation is expected to hold. Note that in the classical gas
limit the kinetic energy dispersion is given by

〈(1E)2〉/N = 2
3(E/N)

2

which, up to the factor23, coincides with (17′).
In the solid a distinction must be made betweenEK andEth. Strictly, the potential

energy is split into two terms,U = Ustr +Uth, whereUstr is a local minimum ofU (or just
a reference potential for several minima as in tunnelling states) andUth = U − Ustr is the
deviation from this local minimum. The total energy associated with atomic motion, i.e. the
energy aboveUstr , is thenEth = EK+Uth. In the amorphous system we have a distribution
of Ustr values corresponding to a distribution ofU surfaces. Thus, the ground vibrational
energy,E0

th above the minimum,Ustr , of the potential energy, becomes ensemble dependent
in the glass. The same holds for the total energyE0 = E0

th+Ustr at the zerothermometric
T = Tth = 0, while still Tstr > 0.

In classical statistical mechanics the entropy can be obtained directly from structure data
through [11]

S = Sid +
∞∑
n>2

Sn Sid − 3NkB
{

5
2 − log

(
ρ33

)}
3 = h√

2πmkT
. (41)
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HereSid is the ideal gas entropy, and theSn, n > 2, are functionals of the densityρ and
of the molecular distributionsg(k), 2 6 k 6 n. Taking only the first two terms,S2 being
evaluated directly fromg(r) data, an estimate ofS for liquid Na near the melting point has
been obtained within 2% of the calorimetric measurement value [12]. These results do not
require knowledge of the potentials. In the classical limit (41) should be consistent with
(5) and (3), provided the correctT = T (E) is substituted into3 in Sid . However, it seems
that in the glass regime (41) cannot apply, since the translational temperature enteringSid

is lower than the unknown ‘structural’ temperature which remains practically constant for
measuredT below Tg. It is not clear either how (41) should be modified to account for
quantum effects.
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